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1 PREFACE

1 Preface

Grading Scheme:

Textbook:

Comments:

Read these: https://www.maths.cam.ac.uk/undergrad/files/studyskills.pdf

https://tll.mit.edu/teaching-resources/how-people-learn/metacognition/



2 CAUCHY SEQUENCES

2 Cauchy Sequences

VISUALIZING SEQUENCE CONVERGENCE: FORMAL vs. INTUITIVE

FORMAL DEFINITION INTUITIVE DEFINITION
(Mathematical Symbolism) (Conceptual Understanding)

Let (a,,) be a sequence in Q. We say that (a,,)
converges to a rational number g € Q if and only if

for every € € Q with e > 0, there exists N € N No matter how small a'positive tolerance
suchithat foralln 2 N, |a, —ql < €+ f == you choose (as long as it is rational),
valuein @ P there is a point in the sequence
i o : el 3fter which every term
i A TR J:' ___________ - lies within that tolerance of q .
q (limit) = I - . =" i - A ® Once you pass that point, the
§ciiee Se e e- ? ---------- ! sequence never strays farther away
: i == from g than the \chosen margin .
TES IS T8 b0 e

VISUALIZING CAUCHY SEQUENCES: FORMAL vs. INTUITIVE

FORMAL DEFINITION INTUITIVE DEFINITION
(Mathematical Symbolism) (Conceptual Understanding)

Let (a,,) be a sequence in Q (or more generally, in a metric
space). The sequence (a,,) is called Cauchy if and only if

for every e € Q with e > 0, there exists N € N No matter how small a/positive distance
suchithat forallm,n >N, |a, — an| < € = you prescribe,
valtie i O \E—b there is a point in the sequence
i o ] === beyond which every pair of terms
. & ISi;t;r:c;;:_ é _J: B (:l.ilrz)’ ' » is closer than that distance .
cRfliie . 0 A Once you go far enough out, the
[ )
oo .- (m, ar) sequence stops spreading and its later
i N terms become mutually indistinguishable
e T N 2 8 910 _ n(index at any desired level of precision.




2 CAUCHY SEQUENCES

2.1 El.4: Proof of Boundedness in QQ

Proposition: A subset A C Q is bounded if and only if it has a lower bound and an
upper bound.

Proof:
(=)

Suppose A C Q is bounded. By definition, there exists some M > 0 such that for all
a € A, |a] < M. The inequality |a| < M may be rewritten as:

—M<ag< Mforallae A

This inequality shows that M is an upper bound for A and —M is a lower bound for A.
(=)

Suppose A has an upper bound U such that Va € A,a < U, and a lower bound L such
that Va € A, L < a. We may write:

Vae A, L<a<U
To show that A is bounded, we must find a single constant k& > 0 such that |a| < k for all
a € A.
Let k = max(|L],|U|). Then:
« Since k > |L|, it follows that —k < —|L|. Because —|L| < L, we have —k < L.
e Since k > |U| and U < |U|, we have U < k.

K = max(|L}, |U])

Therefore, we can write:
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—k<L<a<U<k=-k<a<k

By the properties of absolute value, this implies |a| < k for all a € A. Thus, by definition,
A is bounded.
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2.2 E1.6 (b): Epsilon Test for Infimums

Set:
1.

A={L1 |z >0}
Supremum (sup A)
Value: sup A =1/2

Finding the bound: The maximum occurs when x = 2. Plugging this in:
-1 _ 1

2 2°

Epsilon Proof: For any given ¢ > 0, we can choose the number 1/2 from the set
(where o = 2). Since ¢ is positive, it is always true that:

1/2>1/2—¢
Infimum (inf A)
Value: inf A =0
Finding the bound: The value of the expression approaches 0 as z — oo.

Epsilon Proof: For any given € > 0, we need to find a number in the set such that:

<0+4-¢

—_

To simplify the search for x, we note that % > —”;_1 Therefore, any = that satisfies

% < ¢ will also satisfy our condition.

Simplifying the expression:

vr_ 1
vV

Solving for z:

1 1 1
—=<e=>-<Vr= 5 <o
g g

VT
Choice of z: Pick x = E% + 2.

This value is valid because it is > 2 (staying in the set) and is strictly > 5% This
ensures the resulting value in the set is smaller than 0 + .
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f(x)

0.6
Supremum = = (Maximum)
¥ 2
B . B B i e e B B i e
0.4+
For any € > 0, there
isapointinA<e
0.3+
pia »
0.2+
04
Approaches 0
2 Infimum = 0 (Asymptote) ———
0 e L, d " K AL I o P e | = | L ! »
0 2 4 6 8 10 12 14 16 18 20
SetA={f{x)|x=22} X )
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